Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Chem Biodivers ; : e202400929, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38661022

RESUMO

In order to explore novel natural product-based insecticidal agent, two important intermediates (2 and 3) and 4-acyloxy-2'-bromo-6'-chloropodophyllotoxin derivatives (4a-f and 5a-f) were designed and prepared, and their structures were confirmed by 1H NMR, 13C NMR, HRMS, ESI-MS, optical rotation and melting point (mp). The stereochemical configuration of compound 4b was unambiguously confirmed by single-crystal X-ray diffraction. Moreover, we evaluated the insecticidal activity of target compounds 4a-f and 5a-f against a serious agricultural pest of Mythimna separata by using the leaf-dipping method. Among all tested compounds, compounds 4d, 5d and 5f exhibited stronger insecticidal activity with a final mortality rate exceeding 60%. Especially compound 5d exhibited the best insecticidal activity, with a final mortality rate of 74.1%. It has been proven that introducing bromine or chlorine atoms at the C-2', C-2' and C-6' positions of the E ring of podophyllotoxin can produce more potent compounds. In addition, the configuration of the C-4 position is important for insecticidal activity, and 4ß-configuration is optimal. This will pave the way for further design, structural modification, and development of derivatives of podophyllotoxin as insecticidal agents.

2.
Carbohydr Polym ; 335: 122063, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38616074

RESUMO

The surface properties of cardiovascular biomaterials play a critical role in their biological responses. Although bacterial nanocellulose (BNC) materials have exhibited potential applications in cardiovascular implants, the impact of their surface characteristics on biocompatibility has rarely been studied. This study investigated the mechanism for the biocompatibility induced by the physicochemical properties of both sides of BNC. With greater wettability and smoothness, the upper BNC surface reduced protein adsorption by 25 % compared with the lower surface. This prolonged the plasma re-calcification time by 14 % in venous blood. Further, compared with the lower BNC surface, the upper BNC surface prolonged the activated partial thromboplastin time by 5 % and 4 % in arterial and venous blood, respectively. Moreover, the lower BNC surface with lesser rigidity, higher roughness, and sparser fiber structure promoted cell adhesion. The lower BNC surface enhanced the proliferation rate of L929 and HUVECs cells by 15 % and 13 %, respectively, compared with the upper BNC surface. With lesser stiffness, the lower BNC surface upregulated the expressions of CD31 and eNOS while down-regulating the ICAM-1 expression - This promoted the proliferation of HUVECs. The findings of this study will provide valuable insights into the design of blood contact materials and cardiovascular implants.


Assuntos
Materiais Biocompatíveis , Líquidos Corporais , Humanos , Adsorção , Materiais Biocompatíveis/farmacologia , Calcificação Fisiológica , Células Endoteliais da Veia Umbilical Humana
3.
Int J Biol Macromol ; 266(Pt 1): 130646, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38460632

RESUMO

The development of bio-based hemodialysis membranes continues to be a challenge. Bacterial nanocellulose (BNC) membranes show potential in hemodialysis but can hardly retain beneficial proteins. Here, chitosan particles/bacterial nanocellulose (CSP/BNC) membranes were designed to efficiently remove uremic toxins and retain beneficial proteins. First, CSPs were synthesized in situ within a BNC membrane by ionic gelation following negative pressure impregnation. Subsequently, these membranes were thoroughly characterized. Compared with the BNC membrane, the pore volume and pore size of the 3 % CSP/BNC membrane decreased by 42.2 % and 32.1 %, respectively. The increased 22.2 times of Young's modulus and 88.9 % of tensile strength in the 3 % CSP/BNC membrane confirmed enhanced mechanical property. The sieving coefficient of bovine serum albumin decreased to 0.05 ± 0.03 in the 3 % CSP/BNC membrane. Moreover, the CSP/BNC membrane exhibited good hemocompatibility and cytocompatibility. The simulated dialysis results showed that the 3 % CSP/BNC membrane exhibited high clearance of urea (16.37 %/cm2) and lysozyme (3.54 %/cm2), while efficiently retaining bovine serum albumin (98.04 %/cm2). This is the first demonstration of the construction of a BNC-based hemodialysis membrane with in situ CSP formation to effectively regulate the pore properties of the membrane, making the CSP/BNC membrane a promising candidate for hemodialysis applications.

4.
Nat Prod Res ; : 1-10, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38501725

RESUMO

In order to explore novel natural product-based anti-oomycete agent, ten 2-acyloxyhinokitiol derivatives (5a-j) were designed and synthesised, and structurally confirmed by 1H NMR,13C NMR, HRMS, and melting point. The stereochemical configuration of compound 5f was unambiguously confirmed by single-crystal X-ray diffraction. Furthermore, we evaluated the target compounds 5a-j as anti-oomycete activity against a serious agricultural disease of Phytophthora capsici. Among the ten hinokitiol ester derivatives tested, four compounds 5d, 5g, 5h and 5j had anti-oomycete activity higher than the positive control zoxamide (EC50 = 23.59 mg/L), and the EC50 values of 18.90, 20.62, 13.61 and 21.29 mg/L, respectively. Especially compound 5h exhibited the best anti-oomycete activity against P. capsici with EC50 value of 13.61 mg/L. Overall, the anti-oomycete activities of 2-acyloxyhinokitiol derivatives is higher than that of 2-sulfonyloxyhinokitiol derivatives. The results laid a good foundation for the subsequent synthesis of hinokitiol ester derivatives with significant anti-oomycete activity.

5.
Angew Chem Int Ed Engl ; 63(14): e202319662, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38366812

RESUMO

Owing to their distinctive 1,3-dipolar structure, the catalytic asymmetric hydrogenation of nitrones to hydroxylamines has been a formidable and longstanding challenge, characterized by intricate enantiocontrol and susceptibility to N-O bond cleavage. In this study, the asymmetric hydrogenation and transfer hydrogenation of nitrones were accomplished with a tethered TsDPEN-derived cyclopentadienyl rhodium(III) catalyst (TsDPEN: p-toluenesulfonyl-1,2-diphenylethylene-1,2-diamine), the reaction proceeds via a novel 7-membered cyclic transition state, producing chiral hydroxylamines with up to 99 % yield and >99 % ee. The practical viability of this methodology was underscored by gram-scale catalytic reactions and subsequent transformations. Furthermore, mechanistic investigations and DFT calculations were also conducted to elucidate the origin of enantioselectivity.

6.
Org Lett ; 26(8): 1623-1628, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38363721

RESUMO

An extremely concise, scalable, and stereoselective synthesis of a privileged chiral skeleton based on 2,2'-biindolyl and commercially available chiral building blocks has been developed. This novel skeleton allows for easy access to a range of bisphosphine ligands (decagram scale, up to 58% total yield, only three steps). The synthetic method is characterized by an efficient central-to-axial chirality transfer strategy. In particular, the superior performance of the ligands has been demonstrated in diverse reactions, including several asymmetric hydrogenations, asymmetric conjugate reductions, and cycloisomerization reactions, indicating a great potential for the application of the newly developed chiral backbones in further modifications and exploration of novel chiral ligands and catalysts.

7.
Org Lett ; 26(14): 2811-2816, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38227838

RESUMO

Herein we have developed a highly practical and efficient one-step coupling protocol for the synthesis of chiral spiro diphosphine ligands, especially for the oxa-spiro diphosphine ligands O-SDP, which showed excellent reactivity and diastereoselectivity in the asymmetric hydrogenation of a key intermediate of Sacubitril. It should be noted that the one-step coupling protocol could be operated on a kilogram scale, and the resulting ruthenium catalyst of O-SDP could hydrogenate the key intermediate of Sacubitril on an industrial scale.

8.
Nat Prod Res ; 38(6): 906-915, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37115170

RESUMO

Using ursolic acid (UA) as the lead compound, thirteen UA ester derivatives (3 and 7a-l) were synthesized by modifying their C-3 and C-28 positions, respectively, and their structures were well characterized by 1H NMR, 13C NMR, HRMS and melting points. Furthermore, we evaluated the anti-oomycete and anti-fungal activities of these compounds against Phytophthora capsici and Fusarium graminearum in vitro. The results showed that compound 7h exhibited prominent anti-oomycete and anti-fungal activities, and the median effective concentration (EC50) values of 7h against P. capsici and F. graminearum were 70.49 and 113.21 mg/L, respectively. This study suggested that the anti-oomycete and anti-fungal activities of esters synthesized by introducing acyloxy group at C-3 position of UA was more conspicuous than that of esters synthesized by introducing benzyloxy group at C-28 position. This result will pave the way for further modification of UA to develop potential new fungicides.


Assuntos
Fungicidas Industriais , Phytophthora , Ésteres/farmacologia , Relação Estrutura-Atividade
9.
Ecotoxicol Environ Saf ; 268: 115721, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38000300

RESUMO

Penthiopyrad (PO), a succinate dehydrogenase inhibitor (SDHI) fungicide, poses a potential risk to fish. Here, we investigated the adverse effects of PO on endocrine regulation and reproductive capacity in zebrafish during a 21-d sublethal exposure to PO concentrations ranging from 0.02 to 2.00 mg/L. Following exposure to PO (0.20 and 2.00 mg/L), female-specific effects including follicle necrosis, structural disturbance of the yolk follicle, fusion of cortical follicles appeared in ovarian tissue of adult females, which led to a significant reduction in fertility. Correspondingly, 0.20 and 2.00 mg/L PO led to a marked reduction in the GSI values of females, and 2.00 mg/L PO caused a 31% decline in the proportion of perinucleolar oocytes (PCO) in oocytes. In addition, testosterone (T) level was obviously suppressed and 17ß-estradiol (E2) level was increased in females after exposure to 2.00 mg/L PO. Male zebrafish treated with 0.20 and 2.00 mg/L of PO exhibited significant interstitial enlargement, edema in the testes, and reduced diameter of seminiferous tubules, along with a thinner basement membrane. The effects of PO on males were associated with significant increase in E2 level, suggesting that PO has an estrogenic effect on male fish. Greater E2 levels in serum were further supported by increased transcription levels of genes linked to the hypothalamic-pituitary-gonad-liver (HPGL) axis. Notably, transcription levels of cyp19a, er2b, era, and cyp19b was remarkably increased, exhibiting a clear link with variations in E2 levels. Overall, the present study demonstrates that PO induces reproductive impairment in zebrafish by promoting steroidogenesis.


Assuntos
Disruptores Endócrinos , Poluentes Químicos da Água , Animais , Masculino , Feminino , Peixe-Zebra/fisiologia , Gônadas , Sistema Endócrino , Pirazóis/farmacologia , Reprodução , Poluentes Químicos da Água/toxicidade , Vitelogeninas/genética , Disruptores Endócrinos/toxicidade
10.
Nat Prod Res ; : 1-9, 2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-37950734

RESUMO

Using 18ß-glycyrrhetinic acid (GA) as the lead compound, fourteen GA sulphonate derivatives (3a-n) were prepared by modifying its C-3 OH group, and their structures were well confirmed by 1H NMR, 13C NMR, HRMS and melting points. Moreover, we screened the anti-oomycete activity of these compounds against Phytophthora capsici by using the mycelial growth rate method. Among the fourteen GA sulphonate derivatives evaluated, four compounds 3f, 3j, 3k and 3l exhibited more potent anti-oomycete activity than that of the positive control zoxamide (EC50 = 25.17 mg/L), and had the median effective concentration (EC50) values of 23.04, 16.16, 22.55, and 13.93 mg/L, respectively. Especially compound 3l showed the best anti-oomycete activity against P. capsici with EC50 value of 13.93 mg/L. Overall, the introduction of sulfonyloxy groups at the C-3 position of GA has a significant impact on its anti-oomycete activity, and the corresponding derivative activity varies significantly with different substituents R.

11.
Artigo em Inglês | MEDLINE | ID: mdl-37929728

RESUMO

BACKGROUND: Developing high-efficiency and low-risk small-molecule green fungicide is the key to effective control of the plant pathogenic oomycetes. Indole is an important raw material for drug synthesis. Due to its unique structural skeleton, indole, and its derivatives have exhibited a wide range of biological activities. However, a study on the synthesis of novel indole derivatives as fungicidal agents against Phytophthora capsici has not yet been reported. METHODS: The important intermediates 2a-c and 3a-c were synthesized in high yields by Vilsmeier- Haack and Knoevenagel reactions with indole as the lead compound. Furthermore, different substituted benzenesulfonyl groups were introduced into the NH position of the indole ring, and twelve indole derivatives (I-a-l) were prepared. Their structures were well characterized by 1H NMR, HRMS, and melting point. RESULTS: The results showed that 2-[(N-(4-nitrobenzenesulfonyl)-indole-3)-methylene]-diethyl malonate (I-d) and 2-[(N-(4-nitrobenzenesulfonyl)-5-cyanoindole-3)-methylene]-diethyl malonate (I-l) showed more anti-oomycete activity against P. capsici than the commercialized fungicide zoxamide, with corresponding EC50 values of 26.53, 23.48 and 28.16 mg/L, respectively, and the protective effect of the compounds against P. capsici in vivo further confirmed the above results. CONCLUSION: The preliminary structure-activity relationship showed that the formyl group modification at the C-3 position of the indole ring was acceptable, and the different anti-oomycete activities of R1 and R2 were significantly different, with R1 being 5-CN > H > 6-Me, and R2 being 4-NO2 > 3-NO2, H > 4-Me.

12.
Org Lett ; 25(37): 6875-6880, 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37697226

RESUMO

Chlorohydrins and oxaheterocycles are synthetically valuable building blocks for diverse natural products and therapeutic substances. A highly efficient Ir/f-phamidol-catalyzed asymmetric hydrogenation of ω-chloroketones was successfully developed, and various chlorohydrins and oxaheterocycles were obtained divergently with excellent yields and enantioselectivities (up to >99% yield and >99% ee). Synthetic utilities of this divergent transformation were demonstrated by gram-scale synthesis of key intermediates of several enantiomerically enriched drugs via this catalytic methodology.

13.
Chem Biodivers ; 20(7): e202300607, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37334925

RESUMO

Using cinchona alkaloid as the lead compound, twenty-four cinchona alkaloid sulfonate derivatives (1 a-l, 2 a-c, 3 a-c, 4 a-c, and 5 a-c) were designed and prepared by modifying their C9 position, and structurally confirmed by 1 H-NMR, 13 C-NMR, HR-MS and melting points. Moreover, the stereochemical configurations of compounds 1 f and 1 l were unambiguously confirmed by single-crystal X-ray diffraction. Furthermore, we determined the anti-oomycete and anti-fungal activities of these target compounds against Phytophthora capsici and Fusarium graminearum in vitro. The results showed that two compounds 4 b and 4 c exhibited prominent anti-oomycete activity, and the median effective concentration (EC50 ) values of 4 b and 4 c against P. capsici were 22.55 and 16.32 mg/L, respectively. This study suggested that when the C9 position of cinchona alkaloid sulfonate derivatives is in the S configuration and the 6'-position methoxy group is not present, the anti-oomycete activity is superior. In addition, five compounds 1 e, 1 f, 1 k, 3 c and 4 c displayed significant anti-fungal activity, with EC50 values of 43.64, 45.07, 80.18, 48.58 and 41.88 mg/L against F. graminearum, respectively. This result indicates that only when a specific substituent is introduced into the structural framework of the target compound, the corresponding compound exhibits significant inhibitory activity against fungi.


Assuntos
Alcaloides de Cinchona , Phytophthora , Fungos , Espectroscopia de Ressonância Magnética , Alcaloides de Cinchona/farmacologia , Antifúngicos/farmacologia , Antifúngicos/química , Relação Estrutura-Atividade
14.
Nat Commun ; 14(1): 3718, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37349291

RESUMO

Developing catalysts with both useful enantioselectivities and million turnover numbers (TONs) for asymmetric hydrogenation of ketones is attractive for industrial production of high-value bioactive chiral entities but remains a challenging. Herein, we report an ultra-efficient anionic Ir-catalyst integrated with the concept of multidentate ligation for asymmetric hydrogenation of ketones. Biocatalysis-like efficacy of up to 99% ee (enantiomeric excess), 13,425,000 TON (turnover number) and 224 s-1 TOF (turnover frequency) were documented for benchmark acetophenone. Up to 1,000,000 TON and 99% ee were achieved for challenging pyridyl alkyl ketone where at most 10,000 TONs are previously reported. The anionic Ir-catalyst showed a novel preferred ONa/MH instead of NNa/MH bifunctional mechanism. A selective industrial route to enantiopure nicotine has been established using this anionic Ir-catalyst for the key asymmetric hydrogenation step at 500 kg batch scale, providing 40 tons scale of product.


Assuntos
Cetonas , Nicotina , Catálise , Biocatálise , Hidrogenação
15.
Chem Sci ; 14(18): 4888-4892, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37181773

RESUMO

The highly efficient Rh/ZhaoPhos-catalysed asymmetric hydrogenation of γ-butenolides and γ-hydroxybutenolides was successfully developed. This protocol provides an efficient and practical approach to the synthesis of various chiral γ-butyrolactones, which are synthetically valuable building blocks of diverse natural products and therapeutic substances, with excellent results (up to >99% conversion and 99% ee). Further follow-up transformations have been revealed to accomplish creative and efficient synthetic routes for several enantiomerically enriched drugs via this catalytic methodology.

16.
Org Lett ; 25(14): 2426-2431, 2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-36999750

RESUMO

Synthesis of optically enriched racetam analogues was achieved via highly remote diastereocontrolled and enantiocontrolled Pd/C-catalyzed hydrogenation of α,ß-unsaturated γ-lactams. Various mono- and disubstituted 2-pyrrolidones were obtained in excellent yields and stereoselectivities, and a concise and large-scale synthesis of brivaracetam was developed from inexpensive l-2-aminobutyric acid. Surprisingly, stereodivergent hydrogenation was observed by modifying remote functionalized stereocenters and additives, which would provide alternative stereochemical options of chiral racetams synthesis.

17.
Diam Relat Mater ; 134: 109775, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36819598

RESUMO

In this study, we introduced H-terminated diamond solution-gate field-effect transistor (H-diamond SGFET) to detect trace SARS-CoV-2 N-protein, which plays an important role in replication and transcription of viral RNA. 1-Pyrenebutyric acid-N-hydroxy succinimide ester (Pyr-NHS) was modified on H-diamond surface as linker, on which the specific antibody of SARS-CoV-2 N-protein was catenated. Fourier transform infrared spectrum, scanning electron microscope and energy dispersive spectrum were utilized to demonstrate the modification of H-diamond with Pyr-NHS and antibody. Shifts of IDS(max) at VGS = -500 mV in transfer characteristics of H-diamond SGFET was observed to determine N-protein concentration in phosphate buffer solution. Good linear relationship between IDS(max) and log10(N-protein) was observed from 10-14 to 10-5 g/mL with goodness of fit R2 = 0.90 and sensitivity of 1.98 µA/Log10 [concentration of N-protein] at VDS = -500 mV, VGS = -500 mV. Consequently, this prepared H-diamond SGFET biosensor may provide a new idea for diagnosis of SARS-CoV-2 due to a wide detection range from 10-14 to 10-5 g/mL and low limit of detection 10-14 g/mL.

18.
J Hazard Mater ; 446: 130691, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36608576

RESUMO

The toxicity of metals to microorganisms is highly correlated with the type of metal used. However, the differences in the resistance mechanisms of filamentous fungi to multiple metals remain unclear. In this study, we investigated the responses of Aspergillus niger to three toxic metals, i.e., Pb2+, Cd2+, and Cu2+. Fungal growth and metabolism indices showed that A. niger had a higher tolerance to Pb2+ (>1000 mg L-1) than to Cu2+ (300 mg L-1) and Cd2+ (50 mg L-1). An appropriate Pb2+ concentration (<500 mg L-1) stimulated fungal growth and metabolic activity, whereas Cd2+ and Cu2+ stress showed continuously negative influences on fungal physiological parameters, such as biomass and secretion of oxalic acid. A. niger responded to Pb stress by constructing a new border layer around its cell wall. This pathway was also confirmed using RNA-seq analysis, i.e., the gene encoding cell wall α-1,3-glucan synthase was upregulated. This upregulation subsequently promoted the production of polysaccharides, which are the main components that support fungal cell walls. In contrast, the expression of genes encoding both AAA family ATPase and efflux pump antibiotic resistance proteins for Cd2+ and Cu2+ was significantly downregulated. Therefore, these findings elucidated the relatively complete fungal responses to different metal stresses.


Assuntos
Aspergillus niger , Cádmio , Aspergillus niger/genética , Aspergillus niger/metabolismo , Cádmio/toxicidade , Cádmio/metabolismo , Chumbo/toxicidade , Chumbo/metabolismo , Ácido Oxálico/metabolismo
19.
Nat Commun ; 13(1): 7961, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36575172

RESUMO

Construction of C-N bond continues to be one part of the most significant goals in organic chemistry because of the universal applications of amines in pharmaceuticals, materials and agrochemicals. However, E2 elimination through classic SN2 substitution of alkyl halides lead to generation of alkenes as major side-products. Thus, formation of a challenging C(sp3)-N bond especially on tertiary carbon center remains highly desirable. Herein, we present a practical alternative to prepare primary, secondary and tertiary alkyl amines with high efficiency between alkyl iodides and easily accessible diazonium salts. This robust transformation only employs Cs2CO3 promoting halogen-atom transfer (XAT) process under transition-metal-free reaction conditions, thus providing a rapid method to assemble diverse C(sp3)-N bonds. Moreover, diazonium salts served as alkyl radical initiator and amination reagent in the reaction. Mechanism studies suggest this reaction undergo through halogen-atom transfer process to generate active alkyl radical which couples with diazonium cations to furnish final products.

20.
Nat Commun ; 13(1): 7794, 2022 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-36528669

RESUMO

Chiral succinimide moieties are ubiquitous in biologically active natural products and pharmaceuticals. Until today, despite the great interest, little success has been made for stereodivergent synthesis of chiral succinimides. Here, we report a general and efficient method for accessing 3,4-disubstituted succinimides through a dynamic kinetic resolution strategy based on asymmetric transfer hydrogenation. The Rh catalyst system exhibit high activities, enantioselectivities, and diastereoselectivities (up to 2000 TON, up to >99% ee, and up to >99:1 dr). Products with syn- and anti-configuration are obtained separately by control of the reaction conditions. For the N-unprotected substrates, both the enol and the imide group can be reduced by control of reaction time and catalyst loading. In addition, the detailed reaction pathway and origin of stereoselectivity are elucidated by control experiments and theoretical calculations. This study offers a straightforward and stereodivergent approach to the valuable enantioenriched succinimides (all 4 stereoisomers) from cheap chemical feedstocks in a single reaction step.


Assuntos
Ródio , Hidrogenação , Succinimidas , Estereoisomerismo , Catálise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...